ARC–MOF: A Diverse Database of Metal-Organic Frameworks with DFT
Por um escritor misterioso
Descrição
ARC–MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning
ARC–MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning
Capturing snapshots of post-synthetic metallation chemistry in metal–organic frameworks
Recent advancements in metal–organic frameworks integrating quantum dots (QDs@MOF) and their potential applications
Four-dimensional metal-organic frameworks
Towards modeling spatiotemporal processes in metal–organic frameworks: Trends in Chemistry
Large-Scale Refinement of Metal−Organic Framework Structures Using Density Functional Theory
ARC–MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning
Expanding Linker Dimensionality in Metal‐organic Frameworks for sub‐Ångstrom Pore Control for Separation Applications - Macreadie - 2023 - Angewandte Chemie International Edition - Wiley Online Library
The Chemistry of Metal Organic Framework Materials
An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors - Chemical Society Reviews (RSC Publishing) DOI:10.1039/C7CS00122C
PDF) Inverse design of metal-organic frameworks for direct air capture of CO2 via deep reinforcement learning
Leveraging Machine Learning for Metal–Organic Frameworks: A Perspective
Nanoengineering Metal–Organic Frameworks and Derivatives for Electrosynthesis of Ammonia
de
por adulto (o preço varia de acordo com o tamanho do grupo)